Enhancement of Polymeric Immunoglobulin Receptor Transcytosis by Biparatopic VHH

نویسندگان

  • Chris D. Emmerson
  • Els J. van der Vlist
  • Myrthe R. Braam
  • Peter Vanlandschoot
  • Pascal Merchiers
  • Hans J. W. de Haard
  • C. Theo Verrips
  • Paul M. P. van Bergen en Henegouwen
  • Edward Dolk
چکیده

The polymeric immunoglobulin receptor (pIgR) ensures the transport of dimeric immunoglobulin A (dIgA) and pentameric immunoglobulin M (pIgM) across epithelia to the mucosal layer of for example the intestines and the lungs via transcytosis. Per day the human pIgR mediates the excretion of 2 to 5 grams of dIgA into the mucosa of luminal organs. This system could prove useful for therapies aiming at excretion of compounds into the mucosa. Here we investigated the use of the variable domain of camelid derived heavy chain only antibodies, also known as VHHs or Nanobodies®, targeting the human pIgR, as a transport system across epithelial cells. We show that VHHs directed against the human pIgR are able to bind the receptor with high affinity (∼1 nM) and that they compete with the natural ligand, dIgA. In a transcytosis assay both native and phage-bound VHH were only able to get across polarized MDCK cells that express the human pIgR gene in a basolateral to apical fashion. Indicating that the VHHs are able to translocate across epithelia and to take along large particles of cargo. Furthermore, by making multivalent VHHs we were able to enhance the transport of the compounds both in a MDCK-hpIgR and Caco-2 cell system, probably by inducing receptor clustering. These results show that VHHs can be used as a carrier system to exploit the human pIgR transcytotic system and that multivalent compounds are able to significantly enhance the transport across epithelial monolayers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells.

The important family of G protein-coupled receptors has so far not been targeted very successfully with conventional monoclonal antibodies. Here we report the isolation and characterization of functional VHH-based immunoglobulin single variable domains (or nanobodies) against the chemokine receptor CXCR4. Two highly selective monovalent nanobodies, 238D2 and 238D4, were obtained using a time-ef...

متن کامل

Protein traffic in polarized epithelial cells: the polymeric immunoglobulin receptor as a model system.

As a model system to study protein traffic in polarized epithelial cells, we have used the polymeric immunoglobulin receptor. This receptor travels first to the basolateral surface, where it can bind polymeric IgA or IgM. The receptor is then endocytosed and delivered to endosomes. The receptor is sorted into transcytotic vesicles, which are exocytosed at the apical surface. The 103-amino acid ...

متن کامل

Phosphoinositide 3-kinase regulates the role of retromer in transcytosis of the polymeric immunoglobulin receptor.

Retromer is a multimeric protein complex that mediates intracellular receptor sorting. One of the roles of retromer is to promote transcytosis of the polymeric immunoglobulin receptor (pIgR) and its ligand polymeric immunoglobulin A (pIgA) in polarized epithelial cells. In Madin-Darby Canine Kidney (MDCK) cells, overexpression of Vps35, the retromer subunit key for cargo recognition, restores t...

متن کامل

Polymeric Ig receptor: Defender of the fort or Trojan Horse?

The polymeric immunoglobulin receptor (pIgR) is important in host defense, transporting antibodies across mucosal epithelial cells. Recent work has shown that, using a protein that binds directly to the pIgR, Streptococcus pneumoniae can co-opt the transcytosis machinery and gain entry into airway epithelial cells.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011